
A self-consistent approximation method of the Lyapunov exponents in the Anderson

localisation problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 2017

(http://iopscience.iop.org/0953-8984/1/11/009)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 10/05/2010 at 17:59

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 1 (1989) 2017-2023. Printed in the UK 

A self-consistent approximation method for the 
Lyapunov exponents in the Anderson localisation 
problem 

K M Slevin 
Blackett Laboratory, Imperial College, London SW7 2BZ, UK 

Received 27 April 1988, in final form 3 October 1988 

Abstract. We develop a self-consistent approximation for the Lyapunov exponents of a 
product of random matrices using a weak-disorder expansion. We compare our results with 
those of published simulations. 

1. Introduction 

Lyapunov exponents are widely used in studying the electronic properties of disordered 
systems. They are of relevance to studying such physical quantities as the conductance, 
density of states, magnetisation and free energy. Numerical simulation methods [ l ,  21 
for calculating exponents have produced important results concerning the scaling theory 
of localisation [3] and the distribution of Lyapunov exponents [4]. 

In one dimension, analytic methods [5 ,6 ]  and weak-disorder expansions [7-91 allow 
easy calculation of the Lyapunov exponents for this case and have proved very useful in 
understanding electron localisation in one dimension. In two and three dimensions the 
problem is more difficult. In [lo, 111 an explicit expression for the sum of the positive 
Lyapunov exponents was obtained, whereas in I121 a weak-disorder expansion for the 
Lyapunov exponents of a product of random matrices describing a multi-channel system 
was developed. However, applied to the two-dimensional localisation problem, the 
expansion is not valid for energies inside the bands of the averaged system. 

In this paper, we show how to use a weak-disorder expansion to calculate the 
exponents at all energies. The basic idea is to use a basis of decaying waves, rather than 
the standard plane waves, to describe a localised state. We then make the decay lengths 
of our basis consistent with the exponents estimated from the weak-disorder expansion. 
This gives us a self-consistent approximation for the Lyapunov exponents. 

2. Weak-disorder expansion 

In this section, we develop a weak-disorder expansion for the Lyapunov exponents of a 
product of random matrices TL where 

L 

T L  = rI (A fluB,). 
n = l  

(1) 
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Matrix A is a fixed diagonal matrix with the form 

where 1wil # lwjl if i # j .  Matrix Bn is a random matrix. In the limit that L tends to infinity 
a limiting matrix r exists [13] where 

(2) A . .  = w . 6 . .  
11 11 

r = L-0: lim(TeTL)1/2L. (3) 

The Lyapunov exponents are defined as the logarithms of the eigenvalues of the matrix 
r. So, if ni is the ith eigenvalue of TL and zi is the ith Lyapunov exponent, then 

z i  = lim (1/L) Re(1og ni ) .  (4) L- = 

We can expand the product in (1) as series in powers of p: 
TL = AL + pC + p 2 D  + O ( p 3 )  

where 
L 

C = 2 AL-"B,An-l 
n = l  

D = 2 AL-rZ6,An-m-l BmAm-l 
n>m 

using standard perturbation theory we obtain the ith eigenvalue ni of TL as 

(7) 

If we expand the logarithm of (8), substitute for matrices C and D and take the limit as 
L + CQ, we obtain 

where averages are calculated as 

With L tending to infinity. Here we are only able to take the limit as L tends to infinity 
to obtain (9) if the modulus of the ith eigenvalue of A is different from the modulus all 
other eigenvalues of A. This is the origin of the previously stated condition on the 
eigenvalues of A. 

It should be noted that the first- and second-order terms in ( 5 )  may not be the largest 
corrections to TL, when p is nonzero, for large L. The application of perturbation theory, 
to obtain (8), may therefore seem inappropriate. However, what we are interested in 
is the small-p expansion of the logarithms of the eigenvalues TL, and the first- and second- 
order terms are the largest corrections to these. 

If we set (B) = 0 and re-order A so that lwil > /wj /  if i < j ,  then (10) is equivalent to 
the result obtained in [12] by a different method. 

3. Application of the expansion 

We consider a two-dimensional bar of width M atoms. We write the wavefunction for 
the bar as a linear combination of atomic orbitals 
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where II = 1, L and m = 1, M and R,,,, is the position vector of the (n ,  m)  lattice site. 
We use a tight-binding Hamiltonian with nearest-neighbour hopping only: 

( E  - E n . m ) a n , m  - v P ( a n , m - l  + a n , m + l )  - V ( a n - l , m  + a n + l , m )  = 0. (12) 
Here E is the Fermi energy, E,,,, is the site energy of the atom at the (n ,  m)  lattice site 
and Vis the hopping integral to nearest neighbours along the chain and PV the hopping 
integral to nearest neighbours across the chain. We can write this in transfer matrix form 
as 

u n + 1  = M n u n  (13) 
where u;f = 
form 

. . . , an,M,  a,- . . . , an- 1 ,  M )  and M, is a 2M x 2M matrix of the 

where Hn is an M X M matrix given by 

[ H n ] i , j  = ( E  - E n , i ) a i , j / V -  P a i , j * l *  (15) 
It is usual to use units where V = 1 and to measure energies in units of the hopping 
integral V.  We assume that the site energies En,,, are independent, identically distributed 
random variables and we choose the zero of energy so that the average is zero. 

We impose fixed boundary conditions ( u ~ , ~ + ~  = a,,o = 0) and define a 2M X 2M 
matrix Q by 

r 1 

L 

where xq are column vectors with 1 s q < M and [xqIj = sin(k,j) and 

E - E% - 2P  COS(^,) = 2  COS(^,) (17) 
with k,  = n q / ( M  + l ) ,  wq = exp(iq,) and w- ,  = exp( --iq,). For the moment we regard 
the qp as variable parameters and Q as a function of these. We similarity transform the 
transfer matrix and define matrices A and B by 

A + pB, = QM,Q-’ (18) 
where A is a diagonal matrix of form 

A P J l  = w q a p , ,  1 s p ,  q s 2M 

with 

Matrix B is given by 

pB, = [‘.. ‘.‘] 
C n , 2  C n , 2  

where the sub-matrices C are the M X M matrices given below: 

[ C n , l l p , q  = -wpapyP(Q,”,q - E Z S p , q )  
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[ C n , 2 ] p , q  = -w-pffp+M(Q;,q - E g 6 p , q )  

and where 

aq = 1/2isin(qq) l G q G M  

f f q + M  = - f f q  l S q S M  

and finally 

with 1 ~ p ,  q s M .  
Provided that we choose the qp parameters such that the set of values {Re(@,); i = 

1, , . . , M }  are all distinct (equivalent to the moduli of the eigenvalues of A all being 
distinct), we may apply the expansion developed in 0 2. Doing so and noting that we can 
immediately re-sum all terms at all orders which do not depend on the disorder, we 
obtain 

where 
M 

and 

2 cOs(e, = E - 2p cos(k,) (29) 
and (E2)  is the variance of the site energies. 

In previous work on weak-disorder expansions [ 121, it has been usual to use a basis 
of travelling waves. Inside an energy band this means that at least two of the eigenvalues 
of A have the same modulus. For example, for at least one q ,  Iwql = I w ~ + ~ I  = 1. Here, 
by using a basis of decaying waves, we are able to break this degeneracy, /wql = 
l / I W q + M (  # 1,  and so we are able to apply the expansion. The price that we pay is that 
we must now justify a choice of qP parameters. In Q 4, we do this using a self-consistency 
argument, 

4. Self-consistent procedure 

In this section, we explain how the qp ( p  = 1, M )  parameters are calculated. A given set 
of qp values corresponds to a basis of decaying waves, the inverse of thepth decay length 
beingRe(iq,). Suppose that we start with some initial set of values for the qp parameters 
and then estimate the Lyapunov exponents by evaluating the perturbation series (27). 
This gives us a new set of decay lengths. We choose the qp values so that these two sets 
of lengths are identical. From (27) it is clear that, for this choice of qp values, 

The problem thus becomes to find the zero of M non-linear complex equations in M 
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Figure 1. Localisation lengths for a chain width 
M = 2, disorder W = 2 and inter-chain coupling 
p = 2: -, simulation; ---, perturbation the- 
ory. 
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Figure 2. Shortest localisation length for a chain 
width M = 5 ,  disorder W = 1 and inter-chain 
coupling j3 = 1: A, simulations; -, pertur- 
bation theory. 

complex variables. The approximation is made in using a weak-disorder expansion to 
estimate the Lyapunov exponents. 

If we can solve these equations, we identify thepth localisation length 1, as 

lpl = Re(iq,). (31) 

5. Results and discussion 

We applied the above method to the case of a binary alloy, with site energies f W/2. 
The zeros are found using the COSNBF routine of the NAG library (which is a general- 
purpose routine for locating the zero of M non-linear equations in M real variables.) 
The results were compared with a simulation procedure provided by A Mackinnon. 

In figure 1 we show the results for a chain of width two with p = 2, good agreement 
is obtained at all energies except near E = 0. The cause of the disagreement is probably 
the low order of the expansion. This can be seen from the fact the expansion for the 
Lyapunov exponent associated with the eigenvalue of A with largest modulus is one 
dimensional. The term involving inter-channel scattering does not appear. Only if this 
Lyapunov exponent is also the largest exponent can we obtain a self-consistent solution. 
It is this which breaks down near E = 0. At higher orders the expansion for this exponent 
is no longer one dimensional. However, as is seen in [12] the expressions are extremely 
unwieldy. 

In figures 2-4, we show results for a five-atom chain p = 1. Agreement is best for the 
shortest length and worst for the longest length and becomes worse as we move nearer 
E = 0. In fact, for E < 3, it is not possible to obtain a solution for the smallest exponent, 
while for the largest exponent we can obtain a solution for E > 0.3. Again, these 
difficulties are probably due to the low order of the expansion as in the case of the chain 
of width two. 

For both the width-two and the width-five chains the variation in localisation lengths 
with energy reflects the choice of a discrete binary alloy distribution for the site energies. 
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Figure 3. Third-longest localisation length for a 
chain width M = 5, disorder W =  1 and inter- 
chain coupling p = 1: A, simulation; -, per- 
turbation theory. 
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Figure 4. Longest localisation length for a chain 
width M = 5, disorder W =  1 and inter-chain 
coupling /3 = 1: A, simulation; -, pertur- 
bation theory. 

The variation for a smooth distribution of site energies, such as a top-hat distribution, 
would be considerably more monotonic, the localisation lengths increasing as E tends 
towards the band centre at E = 0. 

6. Conclusions 

We have developed a self-consistent approximation scheme for the Lyapunov exponents 
of the Anderson localisation problem. We obtain reasonable agreement with direct 
simulation except in the cases indicated. 

The method developed here is limited to the case of a fixed diagonal matrix A whose 
eigenvalues all have a distinct modulus. The choice of a basis of decaying waves allows 
the application of the expansion to the normal Anderson model for energies within the 
band. However, we think that the method will be of limited use in cases where eigen- 
values of A are actually degenerate and do not just have the same modulus. Some 
progress has been made here in the work in [ 141. 
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